ADIKAVI NANNAYA UNIVERSITY :: RAJAMAHENDRAVARAM
B.A/B.Sc Mathematics Syllabus (w.e.f : 2020-21 A.Y)

B.A/B.Sc	Semester-III	Credits:4
Course:3	ABSTRACT ALGEBRA	Hrs/Weak:5

Course Outcomes:

After successful completion of this course, the student will be able to;

- acquire the basic knowledge and structure of groups, subgroups and cyclic groups.
- get the significance of the notation of a normal subgroups.
- get the behavior of permutations and operations on them.
- study the homomorphisms and isomorphisms with applications.
- Understand the ring theory concepts with the help of knowledge in group theory and to prove the theorems.
- Understand the applications of ring theory in various fields.

UNIT I:

(12 Hours)
GROUPS : Binary Operation - Algebraic structure - semi group-monoid - Group definition and elementary properties Finite and Infinite groups - examples - order of a group, Composition tables with examples.

UNIT II:

(12 Hours)
SUBGROUP:Complex Definition - Multiplication of two complexes Inverse of a complex-Subgroup definition- examples-criterion for a complex to be a subgroups. Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups. Co-sets and Lagrange's Theorem: Cosets Definition - properties of Cosets-Index of a subgroups of a finite groups-Lagrange's Theorem.

UNIT III:

(12 Hours)
NORMAL SUBGROUPS: Definition of normal subgroup - proper and improper normal subgroupHamilton group - criterion for a subgroup to be a normal subgroup - intersection of two normal subgroups Sub group of index 2 is a normal sub group -quotient group - criteria for the existence of a quotient group.

UNIT IV:

(12 Hours)
HOMOMORPHISM :Definition of homomorphism - Image of homomorphism elementary properties of homomorphism - Isomorphism - automorphism definitions and elementary properties-kernel of a homomorphism - fundamental theorem on Homomorphism and applications.
PERMUTATIONS: Definition of permutation - permutation multiplication - Inverse of a permutation cyclic permutations - transposition - even and odd permutations - Cayley's theorem.

UNIT V:

(12 Hours)
RINGSDefinition of Ring and basic properties, Boolean Rings, divisors of zero and cancellation laws Rings, Integral Domains, Division Ring and Fields, The characteristic of a ring - The characteristic of an Integral Domain, The characteristic of a Field. Sub Rings.

Co-Curricular Activities(15 Hours)

Seminar/ Quiz/ Assignments/ Group theory and its applications / Problem Solving.

TEXT BOOK :

1. A text book of Mathematics for B.A. / B.Sc. by B.V.S.S. SARMA and others, published by S.Chand \& Company, New Delhi.

REFERENCE BOOKS :

1. Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing house.
2. Modern Algebra by M.L. Khanna.
3. Rings and Linear Algebra by Pundir \& Pundir, published by Pragathi Prakashan.

BLUE PRINT FOR QUESTION PAPER PATTERN

 COURSE-III, ABSTRACT ALGEBRA| Unit | TOPIC | S.A.Q(including |
| :---: | :---: | :---: | :---: | :---: |
| choice) | | |\quad| E.Q(including |
| :---: |
| choice) |\quad Total Marks

S.A.Q. $=$ Short answer questions	$(5 \mathrm{marks})$	
E.Q.	$=$ Essay questions	$(10$ marks $)$

Short answer questions : $5 \mathrm{X} 5 \mathrm{M}=25 \mathrm{M}$

Essay questions : $5 \mathrm{X} 10 \mathrm{M}=50 \mathrm{M}$

Total Marks $=75 \mathrm{M}$

Course-3: ABSTRACT ALGEBRA

SECTION - A

Answer any FIVE questions.

$5 \mathrm{X} 5 \mathrm{M}=25 \mathrm{M}$

1. Show that the set $\mathrm{G}=\left\{x / x=2^{a} 3^{b}\right.$ and $\left.a, b \in Z\right\}$ is a group under multiplication
2. Define order of an element. In a group G, prove that if $a \in G$ then $O(a)=O(a)^{-1}$.
3. If H and K are two subgroups of a group G , then prove that HK is a subgroup $\Leftrightarrow \mathrm{HK}=\mathrm{KH}$
4. If G is a group and H is a subgroup of index 2 in G then prove that H is a normal subgroup.
5. Examine whether the following permutations are even or odd
i) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 1 & 4 & 3 & 2 & 5 & 7 & 8 & 9\end{array}\right)$
ii) $\left(\begin{array}{ll}1 & 2 \\ 3 & \end{array}\right.$
$\left.\begin{array}{llll}34 & 5 & 67 \\ 45 & 6 & 71\end{array}\right)$
6. If f is a homomorphism of a group G into a group G^{\prime}, then prove that the kernel of f is a normal of G .
7. Prove that the characteristic of an integral domain is either prime or zero.
8. Define a Boolean Ring and Prove that the Characteristic of a Boolean Ring is 2 .

SECTION - B

Answer ALL the questions.
9. a) Show that the set of $\mathrm{n}^{\text {th }}$ roots of unity forms an abelian group under multiplication.
(Or)
b) In a group G, for $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}, \mathrm{O}(\mathrm{a})=5, \mathrm{~b} \neq \mathrm{e}$ and $\boldsymbol{a} \boldsymbol{b} \boldsymbol{a}^{\boldsymbol{- 1}}=\boldsymbol{b}^{\mathbf{2}}$. Find $\mathrm{O}(\mathrm{b})$.
10. a) The Union of two subgroups is also a subgroup \square one is contained in the other.
(Or)
b) State and prove Langrage's theorem.
11. a) Prove that a subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in G is again a right coset of H in G .
(Or)
b) Define Normal Subgroup. Prove that a subgroup H of a group G is normal iff $x \mathrm{Xx}^{-1}=H \forall x \in G$.
12. a) State and prove fundamental theorem of homomorphisms of groups.
(Or)
b) Let S_{n} be the symmetric group on n symbols and let A_{n} be the group of even permutations. Then show that A_{n} is normal in S_{n} and $\mathrm{O}\left(\mathrm{An}_{\mathrm{n}}\right)=\frac{1}{2}(n!)$
13. a) Prove that every finite integral domain is a field.
(Or)
b) Let S be a non empty sub set of a ring R. Then prove that S is a sub ring of R if and only if $a-b \in S$ and $\mathrm{ab} \in \mathrm{S}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{S}$.

